3.1 Full example

3.1.1 Utility per capita from type n humans and plants (\(\bar{U}_{H_{n}P}\) x \(\bar{U}_{P_{n}H}\))

## [1] 31
## [1] 31
Table 3.1: Parameter setting
parameter value
initial_population_humans 10
initial_population_plants 10
number_types_humans 30
number_types_plants 30
undirected_variation_humans 0.15
undirected_variation_plants 0.15
intrinsic_growth_rate_humans 0.04
intrinsic_growth_rate_plants 0.1
utility_per_capita_type_n_plants_to_humans 0 - 3 (sample = 15 )
utility_per_capita_type_n_humans_to_plants 0 - 3 (sample = 15 )
utility_per_capita_type_1_plants_to_humans 0.15
utility_per_capita_type_1_humans_to_plants 0
utility_other_to_type_n_humans 10
utility_other_to_type_n_plants 20
utility_other_to_type_1_humans 80
utility_other_to_type_1_plants 100
max_area 200
max_iterations 5000
reltol_exponential 6
coevolution_threshold 0.5
humans 83.2614080618352 - 567.203133144437 (sample = 225 )
plants 93.7854570454264 - 200 (sample = 91 )
coevolution_coefficient_humans -0.659187038874794 - 0.700598035631623 (sample = 225 )
coevolution_coefficient_plants -0.717940961816382 - 0.70401267833436 (sample = 215 )
dependency_coefficient_humans -0.695128994570018 - 0.943047405719581 (sample = 225 )
dependency_coefficient_plants -1 - 0.965964431960564 (sample = 212 )
timing_humans 0 - 797 (sample = 82 )
timing_plants 0 - 882 (sample = 83 )
time_end 380 - 1407 (sample = 122 )
adaptativeCost.H 0
adaptativeCost.P 0