Andreas Angourakis
19 November 2018
https://andros-spica.github.io/PhD-defense/
Exploración y modelización de patrones socioecológicos y tecnoculturales en sociedades preindustriales de zonas áridas afro-eurasiáticas

Andreas Angourakis
PhD thesis supervised by
Josep M. Gurt Esparraguera and Verònica Martínez Ferreras
ERAAUB logo Facultat logo

Outline

  1. Presentation
  2. Introduction
  3. Analysis of archaeometric data of ceramics
  4. Simulation of socioecological systems
  5. Conclusions

1.

Presentation

Research context

Surkhan Darya Region, Uzbekistan

IPAEB (2006-)
Simulpast (2011-17)
CAMOTECCER (2013-16)
CERAC (2017-20)

Main objective

Define and explore formally a set of socioecological and technocultural mechanisms, postulated as explanations for patterns documented in the history and archaeology of agropastoral societies in arid Afro-Eurasia.

Specific goals

Data analysis

  • Explore methods
  • Consolidate protocols
  • Validate methodology
  • Publish
Computational modelling and simulation
  • Define mechanisms
  • Design models
  • Simulate scenarios
  • Publish
 

+ open and reproducible

2.

Introduction

Theoretical-methodological framework

  • Procesualism
  • Explanation and generalisation
  • Complexity science
  • Quantitative & Digital Archaeology
  • Multivariate statistics | Agent-based modelling
  • Virtual laboratory
landscapes

arid Afro-Eurasia

chrono1 chrono2

Afro-Eurasia historical regions 

https://github.com/Andros-Spica/PhD-materials

Patterns and mecanisms

  • Alternation between the predominance of sedentary agriculture and nomadic/semi-nomadic pastoralism
  • Territorial integration
  • Emergence of cooperative institutions

3.

Analysis of archaeometric data of ceramics

Publications

Martínez Ferreras, V., Angourakis, A., Hein, A., Gurt Esparraguera, J.M., Sverchkov, L.M. and Sánchez del Corral, A., 2016. Pottery in Hellenistic tradition from ancient Bactria: The Kurganzol fortress (Uzbekistan, Central Asia). Journal of Archaeological Science: Reports, 21:1044-1054. https://doi.org/10.1016/j.jasrep.2016.11.049.

Angourakis, A., Martínez Ferreras, V., Torrano, A. and Gurt Esparraguera, J.M., 2018. Presenting multivariate statistical protocols in R using Romanwine amphorae productions in Catalonia, Spain. Journal of Archaeological Science, vol. 93, pp. 150-165. https://doi.org/10.1016/j.jas.2018.03.007.

Martínez Ferreras, V., Gurt Esparraguera, J.M., Ariño Gil, E., Sánchez del Corral, A., Hein, A., Angourakis, A. y Pidaev, S.R., [in press]. Assessing cultural patterns in ancient Termez (Uzbekistan) through the pottery: from the Hellenistic tradition to the nomadic influences. Geoarchaeology, XX(X):XX-XX.

Software

Angourakis, A., 2017. biplot2d3d - an R package for generating highly-customizable biplots. Zenodo. http://doi.org/10.5281/zenodo.897603.

Angourakis, A. and Martínez Ferreras, V., 2017. cerUB - Protocols for exploring archaeometric data (R package). Zenodo. http://doi.org/10.5281/zenodo.1045020.

Goals









projects concept 1 projects concept 1 projects concept 1
Kurganzol pottery                                               Geoarch pottery

Database

table relationships

Geochemical compositional data

  • X-ray fluorescence readings (XRF-WD) by V. Martínez

  • Quantitative (numeric, continuous) data

  • but also compositional
    • variation at different scales
    • intrinsic correlation

Compositional data analysis

  • Transformation: counts/percentages to log-ratios (Aitchinson 1982, Pawlowsky-Glahn & Buccianti 2011):
    • Additive log-ratio (alr)
    • Centered log-ratio (clr)
    • Isometric log-ratio (ilr)

  • Multivariate exploration:
    • Euclidean distances
    • Principal Components Analysis (PCA)

  • Preferred approach (Filzmoser, Hron and Reimann 2009):
    • ilr & robust PCA
Filzmoser2009 Filzmoser, Hron and Reimann (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20:621-632. DOI: 10.1002/env.966
Kurganzol-plot
Martínez Ferreras et al. (2016). JAS:R. https://doi.org/10.1016/j.jasrep.2016.11.049.
Kurganzol3D
Martínez Ferreras et al. (2016). JAS:R. https://doi.org/10.1016/j.jasrep.2016.11.049.
Geoarch-plot
Protocol 1 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.
Geoarch3D
Martínez Ferreras et al. (in press). Geoarch.
Amph-p1
Protocol 1 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.
Amph3D-p1
Protocol 1 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.

Mineralogical and petrographic data

  • X-ray diffraction (XRD) readings by V. Martínez
    → estimation of range of firing temperature

  • Thin-section analysis by V. Martínez
    → selection & processing of clays,
    forming technique

  • Categorical (ordinal) data:
    • Ordered values are NOT equivalent to numbers
XRD ThinSections

Categorical data analysis

  • Transformation: category to ranks Podani1999-table

  • Multivariate exploration:
    • neighbor interchange & Non-metric Multidimensional Scaling (NMDS)
    • relative rank differences & Principal Coordinates Analysis (PCoA)
    • (extended) Gower coeffincient of similarity

  • Approach after Podani 1999, through Pavoine et al. 2009
Podani1999 Podani (1999). Extending Gower General Coefficient of Similarity to Ordinal Characters. Taxon, 48(2): 331-340. http://www.jstor.org/stable/1224438
Amph-p2
Protocol 2 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.
Amph3D-p2
Protocol 2 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.

'Mix-mode' analysis

  • Combining different datasets
    → compare individuals using geochemical, mineralogic and petrographic data
    >  antecedent: Baxter et al. 2008

  • Multivariate exploration:
    • log-ratios (compositional) | relative rank differences (categorical)
    • (extended) Gower coeffincient of similarity
    • Principal Coordinates Analysis (PCoA)

  • Approach after Pavoine et al. 2009 (offers implementation in R)


Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. and Daniel, H. (2009), On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos, 118: 391–402. doi: 10.1111/j.1600-0706.2008.16668.x
Pavoine2009-table Pavoine2009
Amph-p3
Protocol 3 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.
Amph3D-p3
Protocol 3 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.
Amph-p4
Protocol 4 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.
Amph3D-p4
Protocol 4 - Angourakis et al. (2018). JAS. https://doi.org/10.1016/j.jas.2018.03.007.

4.

Simulation of socioecological systems

Publications

Angourakis, A., Rondelli, B., Stride, S., Rubio–Campillo, X., Balbo, A.L., Torrano, A., Martínez, V., Madella, M.; Gurt, J.M. 2014, Land Use Patterns in Central Asia. Step 1: The Musical Chairs Model, Journal of Archaeological Method and Theory, 21: 405-425. http://dx.doi.org/10.1007/s10816–013–9197–0.

Angourakis, A. 2014, Exploring the oases of Central Asia: A model of interaction between mobile livestock breeding and sedentary agriculture, in Antela-Bernárdez, B. and Vidal, J. (eds.) Central Asia in Antiquity: Interdisciplinary Approaches, BAR International Series 2665, pp. 3-16.

Angourakis, A., Salpeteur, M., Martínez, V., and Gurt, J.M. 2017. The Nice Musical Chairs model. Exploring the role of competition and cooperation between farming and herding in the formation of land use patterns in arid Afro-Eurasia. Journal of Archaeological Method and Theory, 21: 405-425. http://dx.doi.org/10.1007/s10816-016-9309-8.

Angourakis, A., Santos, J.I., Galán, J.M. and Balbo, A.L., 2015. Food for all: An agent-based model to explore the emergence and implications of cooperation for food storage. Environmental Archaeology, vol. 20, no. 4, pp. 349-363. http://dx.doi.org/10.1179/1749631414Y.0000000041.

Software

Angourakis, A., 2016. Musical Chairs (Version 2). CoMSES Computational Model Library. https://www.openabm.org/model/4880/version/2.

Angourakis, A., 2017. Nice Musical Chairs (Version 5). CoMSES Computational Model Library. https://www.openabm.org/model/4885/version/5.

Oasis construction in Central Asia

Explaining land use patterns

Land use patterns can be understood as outcomes of a series of contingencies at different scales and different dimensions of human behavior and its environment.

Set of possible states in terms of...

  • Proportions
    between land use classes
  • Stability
  • Distributions
    of land use classes
  • Centralization
    (decision-making)
  • Specialization
    (lifestyles)
  • Intensification
    (labor, resources)
  • Development
    (productivity, institutions, craftsmanship)
  • Wealth
    accumulation and distribution
  • Resilience

In preindustrial Eurasia...

Subsistence strategies produced mainly two distinguishable land use classes, farming and herding.


Shades between these may fit in one or another class, depending on the strategies effective impact on the landscape (do they generate/use farms or pastures?).

Implicit models

Separate niches

separate niches

Interaction is independent of land use

Overlapping niches

overlapping niches

Stakeholders must cooperate or compete for land use

Farming

hydro regions

Herding

herd routes

Stride, S. (2005). Géographie archéologique de la province du Surkhan Darya (Ouzbékistan du sud / Bactriane du nord). Ph.D thesis, Université Paris I Panthéon-Sorbonne.
The separate niche models is not useful!

"Bad" question

Are farming-herding interactions competitive or cooperative?

"Good" questions

Through which mechanisms and under which conditions may stakeholders cooperate or compete?

What impact does these aspects have on the existence of certain land use patterns?

Modeling framework

mechanisms
  • For exploring several mechanisms
  • Land use competition as the core mechanism
  • Progressive and modular theory-building approach

Musical Chairs model

mechanisms MC
  • Limited area
  • Constant pressure to expand land use classes
  • Alternancy between competitive and non-competitive periods
  • Competitive situations resolved asymmetrically:
    herding stakeholders cannot retain the land while herds are away
MC-cycle

Implications of competition

results MC
  • Strong bimodality
  • Bias towards specialized farming economies
  • Intermediate oasis are unresolved situations, sustained by extrinsic factors

Nice Musical Chairs model

mechanisms NMC
  • Group dynamics
  • Pairing
  • Group management
  • Pasture tenure

Nice Musical Chairs model

mechanisms group dynamics
  • Group dynamics:
    • Herding and farming can coexist in the same group
    • cooperation within, competition between
    • size x effectiveness = competitive strength
    • changing group allegiance

Nice Musical Chairs model

mechanisms pairing
  • Pairing:
    farming and herding may perform better by being affiliated to the same group

Nice Musical Chairs model

mechanisms management
  • Group management:
    group leadership presses individual stakeholders to collectively pursue a farming/herding ratio

Nice Musical Chairs model

mechanisms pasture tenure
  • Pasture tenure:
    open versus restrictive.
    Restrictive access means that pastoral land is owned at the group level.

Main results

NMC Fig 5 NMC Fig 6
  • Land use competition
    + open access =
    bias towards farming
  • Group competition =
    larger groups
  • Pairing has the smaller effect
  • Management add to diversity, assuming group target is arbitrary
  • Restrictive access greatly cancels the asymmetry caused by herding mobility

Cooperation for food storage

Food For All model

Food1 Food2

Results

Food3
  • Logistics and technology (efficiency), dietary specialisation, environmental stress

  • Non-linear effect of the penalisation of 'defectors'

  • Special case of the 'tragedy of commons'
Food4

5.

Conclusions

  • Digital tools to facilitate access and reproducibility
  • Methodology of archaeometric studies on ceramics
  • Theory-buiding in History and Archaeology of Afro-Eurasia
  • Better understanding of archaeology of Surkhan Darya region

Acknowledgements

Josep M. Gurt Esparraguera | Verònica Martínez Ferreras | Sebastian Stride | Bernardo Rondelli | Marco Madella | Andrea L. Balbo | Xavier Rubio Campillo
Matthieu Salpeteur | José Ignacio Santos | José Manuel Galán | Ano Hein | Ana Sánchez del Corral | Leonid M. Sverchkov | Meritxell Aulinas Juncà
Maite García-Vallès | Enrique Ariño Gil | Shakir Pidaev

Juan A. Barceló | Enrico Crema | Francesc Miquel Quesada | Maria Pereda | Agnese Fusaro | Alessandra Pecci | Débora Zurro | Carla Lancelotti
CoDa Association | Mark Lake | Patrick Quinn | Mark Altaweel | Mike Charlton | Utkir Abdullaev | Shawn Graham

THANK YOU!

SimulPast (CONSOLIDER-INGENIO 2010) | CAMOTECCER (HAR2012-32653) | CERAC (HAR2016-75133-C3-1-P)

logo background ERAAUB logo Facultat logo Ministerio logo 2 Ministerio logo Ingenio logo simulpast logo FAI UZB logo USAL logo Carleton logo Carleton logo